Radiomic feature clusters and Prognostic Signatures specific for Lung and Head & Neck cancer
نویسندگان
چکیده
Radiomics provides a comprehensive quantification of tumor phenotypes by extracting and mining large number of quantitative image features. To reduce the redundancy and compare the prognostic characteristics of radiomic features across cancer types, we investigated cancer-specific radiomic feature clusters in four independent Lung and Head &Neck (H) cancer cohorts (in total 878 patients). Radiomic features were extracted from the pre-treatment computed tomography (CT) images. Consensus clustering resulted in eleven and thirteen stable radiomic feature clusters for Lung and H cancer, respectively. These clusters were validated in independent external validation cohorts using rand statistic (Lung RS = 0.92, p < 0.001, H RS = 0.92, p < 0.001). Our analysis indicated both common as well as cancer-specific clustering and clinical associations of radiomic features. Strongest associations with clinical parameters: Prognosis Lung CI = 0.60 ± 0.01, Prognosis H CI = 0.68 ± 0.01; Lung histology AUC = 0.56 ± 0.03, Lung stage AUC = 0.61 ± 0.01, H HPV AUC = 0.58 ± 0.03, H stage AUC = 0.77 ± 0.02. Full utilization of these cancer-specific characteristics of image features may further improve radiomic biomarkers, providing a non-invasive way of quantifying and monitoring tumor phenotypic characteristics in clinical practice.
منابع مشابه
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
Human cancers exhibit strong phenotypic differences that can be visualized noninvasively by medical imaging. Radiomics refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features. Here we present a radiomic analysis of 440 features quantifying tumour image intensity, shape and texture, which are extracted from computed tomography dat...
متن کاملRadiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer
INTRODUCTION "Radiomics" extracts and mines a large number of medical imaging features in a non-invasive and cost-effective way. The underlying assumption of radiomics is that these imaging features quantify phenotypic characteristics of an entire tumor. In order to enhance applicability of radiomics in clinical oncology, highly accurate and reliable machine-learning approaches are required. In...
متن کاملDiscovery Radiomics via StochasticNet Sequencers for Cancer Detection
Radiomics has proven to be a powerful prognostic tool for cancer detection, and has previously been applied in lung, breast, prostate, and head-and-neck cancer studies with great success. However, these radiomics-driven methods rely on pre-defined, hand-crafted radiomic feature sets that can limit their ability to characterize unique cancer traits. In this study, we introduce a novel discovery ...
متن کاملCT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer.
BACKGROUND Radiomics uses a large number of quantitative imaging features that describe the tumor phenotype to develop imaging biomarkers for clinical outcomes. Radiomic analysis of pre-treatment computed-tomography (CT) scans was investigated to identify imaging predictors of clinical outcomes in early stage non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiation t...
متن کاملDetermining the Prognostic Factors of Survival in Patients with Head and Neck Cancer Using Parametric Models and Cox Bayesian Model, from 2007 to 2013
Introduction: Head and neck cancer is one of the most important cancers with low survival. This study was designed to evaluate the one-year survival of patients with head and neck cancer and related demographic factors. Methods: The present study was a cross-sectional study that reviewed the records of the patients with head and neck cancer (193 patients) in 2007-2013. In this study, Kaplan-Me...
متن کامل